THE IMPORTANCE OF ANTIBIOTIC RESISTANCE IN MEDICAL PRACTICE AND THE RELEVANCE OF ITS PREVENTION
Abstract
A thorough understanding of the emergence, processes, advancements, and implications of antimicrobial resistance (AMR), which is often seen as a major worldwide public health problem, is necessary. The epidemiological landscape of antimicrobial resistance (AMR) is marked by its extensive prevalence and ever-changing patterns, with multidrug-resistant organisms (MDROs) posing new problems on a daily basis. The establishment and spread of novel resistance strains are facilitated by the most prevalent processes driving AMR, which include genetic alterations, horizontal gene transfer, and selective pressure. Antimicrobial stewardship programs (ASPs) and infection prevention and control strategies (IPCs) are examples of mitigation techniques that highlight the significance of responsible antimicrobial use and surveillance. The interdependence of human, animal, and environmental health is highlighted by a One Health approach, which emphasizes the need for interdisciplinary cooperation and all-encompassing tactics in the fight against AMR. Novel treatment developments (such as vaccines and other antimicrobial medicines) present intriguing ways to address AMR issues. ASPs that seek to control the use of antibiotics are also supported by national and international policy measures. Even with all of the progress that has been seen, antimicrobial resistance (AMR) is still a serious issue that requires ongoing work to address new threats and advance the sustainability of antibiotics. Future studies must focus on novel strategies and tackle the intricate socioecological factors that underlie AMR. For researchers, legislators, and medical professionals trying to understand the complicated AMR landscape and create practical mitigation methods, this book is an extensive resource.
Keywords
Antimicrobial resistance, antibiotic stewardship initiatives, epidemiology, mechanisms, innovative treatments, the One Health concept, policy interventions.How to Cite
References
Habboush Y, Guzman N. Antibiotic Resistance. [Updated 2023 Jun 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513277/
Zhao X, Wang J, Zhu L, Wang J. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Sci Total Environ. 2019 Mar 01;654:906-913.
Ragheb MN, Thomason MK, Hsu C, Nugent P, Gage J, Samadpour AN, Kariisa A, Merrikh CN, Miller SI, Sherman DR, Merrikh H. Inhibiting the Evolution of Antibiotic Resistance. Mol Cell. 2019 Jan 03;73(1):157-165.e5.
Prasetyoputri A, Jarrad AM, Cooper MA, Blaskovich MAT. The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin? Trends Microbiol. 2019 Apr;27(4):339-354.
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms. 2024; 12(9):1920. https://doi.org/10.3390/microorganisms12091920
Abdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., et al. (2020). Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect. Drug Resist. 13, 423–434. doi: 10.2147/IDR.S228089
Afrasiabi, S., and Partoazar, A. (2024). Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Front. Microbiol. 15:1387114. doi: 10.3389/fmicb.2024.1387114
Aljeldah, M. M. (2022). Antimicrobial resistance and its spread is a global threat. Antibiotics (Basel) 11:1082. doi: 10.3390/antibiotics11081082 Alzahrani, N. M., Booq, R. Y., Aldossary, A. M., Bakr, A. A., Almughem, F. A., Alfahad, A. J., et al. (2022). Liposome-encapsulated tobramycin and Idr-1018 peptide mediated biofilm disruption and enhanced antimicrobial activity against Pseudomonas aeruginosa. Pharmaceutics 14:960. doi: 10.3390/pharmaceutics14050960
Armengol, E., Asunción, T., Viñas, M., and Sierra, J. M. (2020). When combined with Colistin, an otherwise ineffective rifampicin-linezolid combination becomes active in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Microorganisms 8:86. doi: 10.3390/microorganisms8010086
Ayoub Moubareck, C. (2020). Polymyxins and bacterial membranes: a review of antibacterial activity and mechanisms of resistance. Membranes (Basel) 10:181. doi: 10.3390/membranes10080181
Bergman, P., Raqib, R., Rekha, R. S., Agerberth, B., and Gudmundsson, G. H. (2020). Host directed therapy against infection by boosting innate immunity. Front. Immunol. 11:1209. doi: 10.3389/fimmu.2020.01209
Chandrakala, V., Aruna, V., and Angajala, G. (2022). Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emerg. Mater. 5, 1593–1615. doi: 10.1007/s42247-021-00335-x
Clifford, K. M., Selby, A. R., Reveles, K. R., Teng, C., Hall, R. G., Mccarrell, J., et al. (2022). The risk and clinical implications of antibiotic-associated acute kidney injury: a review of the clinical data for agents with signals from the Food and Drug Administration’s adverse event reporting system (Faers) database. Antibiotics 11:1367. doi: 10.3390/antibiotics11101367
Cortés, H., Hernández-Parra, H., Bernal-Chávez, S. A., Prado-Audelo, M. L. D., Caballero-Florán, I. H., Borbolla-Jiménez, F. V., et al. (2021). Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials (Basel) 14:3197. doi: 10.3390/ma14123197
Haseeb, A., Saleem, Z., Maqadmi, A. F., Allehyani, R. A., Mahrous, A. J., Elrggal, M. E., et al. (2023). Ongoing strategies to improve antimicrobial utilization in hospitals across the Middle East and North Africa (Mena): findings and implications. Antibiotics (Basel) 12:827. doi: 10.3390/antibiotics12050827
Kloezen, W., Melchers, R. J., Georgiou, P. C., Mouton, J. W., and Meletiadis, J. (2021). Activity of Cefepime in combination with the novel β-lactamase inhibitor Taniborbactam (Vnrx-5133) against extended-Spectrum-β-lactamase-producing isolates in in vitro checkerboard assays. Antimicrob. Agents Chemother. 65:10–1128. doi: 10.1128/AAC.02338-20
Koteva, K., Sychantha, D., Rotondo, C. M., Hobson, C., Britten, J. F., and Wright, G. D. (2022). Three-dimensional structure and optimization of the Metallo-β-lactamase inhibitor Aspergillomarasmine a. Acs Omega 7, 4170–4184. doi: 10.1021/acsomega.1c05757
Ledger, E. V. K., Sabnis, A., and Edwards, A. M. (2022). Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. Microbiology (Reading) 168:001136. doi: 10.1099/mic.0.001136
Makabenta, J. M. V., Nabawy, A., Li, C. H., Schmidt-Malan, S., Patel, R., and Rotello, V. M. (2021). Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36. doi: 10.1038/s41579-020-0420-1
Okpala, Charles, Anyanwu, Madubuike, Łukańko, Sebastian, Nwobi, Obichukwu, Korzeniowska, Malgorzata,Ezeonu, Ifeoma, Animal-Food-Human Antimicrobial Resistance Fundamentals, Prevention Mechanisms and Global Surveillance Trends: A Terse Review. 2016. VL - 8. 89 - 102. DO - 10.22037/afb.v8i2.32206
Aijaz, M.; Ahmad, M.; Ansari, M.A.; Ahmad, S. Antimicrobial Resistance in a Globalized World: Current Challenges and Future Perspectives. Int. J. Pharm. Drug Des. 2023, 1, 7–22.
Ynion, G.P.L.; Rosal, C.J.; Ordanel, Z.A.A.; Caipang, C.M. Challenges and Emerging Molecular Approaches in Combating Antimicrobial Resistance. J. Bacteriol. Virol. 2024, 54, 12–39.
Jadeja, N.B.; Worrich, A. From Gut to Mud: Dissemination of Antimicrobial Resistance between Animal and Agricultural Niches. Environ. Microbiol. 2022, 28, 3290–3306.
Calvo-Villamañán, A.; Álvarez, S.M.; Carrilero, L. Tackling AMR from a Multidisciplinary Perspective: A Primer from Education and Psychology. Int. Microbiol. 2023, 26, 1–9.
License
Copyright (c) 2025 Zulfiya Baratovna Djuraeva

This work is licensed under a Creative Commons Attribution 4.0 International License.
